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Calculate the percentage by which Samsung SDS directly holds more equity in MULTICAMPUS

Question:than the combined indirect ho ldings of Sam sung SDl and Sam sung Electronics in MULlCAMPUS.
Round to two decimal places.

Macroeconomics(3.6%)

Corporate Finance

(60.2%)
Program:Others (2.5%)

MmsuNO Bio,Research a Education Companies' Equity Structure def solution():

# Define ownership percentages
sds_ownership = 47.24
# Samsung SoS's direct ownership of MULTICAMPUS
sdi_ownership = 29.60
# Samsung SDI's ownership of GLOBAL RESEARCH
electronics_ownership = 29.80
# Samsung Electronics ownership of GLOBAL RESEARCH

global_research_to_multicampus = 15.16
# GLOBAL RESEARCH's ownership of MULTICAMPUS
# Calculate SDI and Electronics' indirect ownership
of MULTICAMPUS
indirect_ownership = (sdi_ownership + electronics

-
ownership) * global_research_to_multicampus / 100
# Calculate the difference
difference = sds_ownership - indirect_ownership
# Round to two decimal places
answer = round(difference, 2)
return answer
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Figure 1. Overview of the FinMMR dataset. FinMMR presents three challenges: (1) visual perception: 8.7K financial images of 14 cate-
gories; (2) knowledge reasoning: 4.3K financial questions of 14 subdomains; (3) numerical computation: multi-step precise calculation.

Abstract

We present FinMMR, a novel bilingual multimodal bench-
mark tailored to evaluate the reasoning capabilities of mul-
timodal large language models (MLLMs) in financial nu-
merical reasoning tasks. Compared to existing benchmarks,
our work introduces three significant advancements. (1)
Multimodality: We meticulously transform existing finan-
cial reasoning datasets, and construct novel questions from
the latest Chinese financial research reports. The dataset
comprises 4.3K questions and 8.7K images spanning 14
categories, including tables, bar charts, and ownership
structure charts. (2) Comprehensiveness: FinMMR en-
compasses 14 financial subdomains, including corporate
finance, banking, and industry analysis, significantly ex-
ceeding existing benchmarks in financial domain knowledge
breadth. (3) Challenge: Models are required to perform
multi-step precise numerical reasoning by integrating finan-
cial knowledge with the understanding of complex financial
images and text. The best-performing MLLM achieves only
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51.4% accuracy on Hard problems. We believe that Fin-
MMR will drive advancements in enhancing the reasoning
capabilities of MLLMs in real-world scenarios.

1. Introduction
Recently, large reasoning models (LRMs) [21, 43, 44, 52,
54, 60], show powerful reasoning capabilties over multi-
step reasoning tasks, with train-time scaling and test-time
scaling [26, 41]. These reasoning models are proficient in
code [7, 24], math [30, 36], and science [57]. Multimodal
large language models (MLLMs) [2, 18, 42] also exhibit
greater performance on multimodal reasoning [34, 63].

Despite significant advancements, there remains a no-
table gap in understanding the practical applicability of
MLLMs in numerical reasoning within real-world scenar-
ios, particularly in high-stakes fields such as finance and
healthcare. As depicted in Fig. 1, financial analysts in their
daily work are required to read visually enriched financial
documents, extract key financial indicators from tables, im-
ages, and contextual texts, and perform precise multi-step
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Figure 2. Sampled FinMMR examples with two language (i.e. English and Chinese), rich images and different knowledge. The questions
and images need expert-level visual perception, knowledge reasoning and numerical computation.

numerical calculations, supporting professional decision-
making. Similarly, to achieve expert artificial general in-
telligence (AGI) [4, 16, 37, 38, 63], MLLMs are expected
to comprehend complex domain-specific images akin to hu-
man experts, and apply domain knowledge to perform ac-
curate numerical reasoning. This raises the question: Can
current MLLMs effectively integrate visual and textual
information to perform deep, domain-specific complex
reasoning, similar to the significant progress made by

LRMs in text-based reasoning?

Specifically, we choose the financial domain to evaluate
the complex reasoning capabilities of MLLMs, where pre-
cision and transparent reasoning are paramount [27]. Ex-
isting numerical reasoning benchmarks for finance are lim-
ited in their text-based reasoning, coverage of specific fi-
nancial knowledge, and complexity of reasoning [10, 12,
27, 65, 67]. FAMMA [61] is mainly modelled after text-
book and CFA exam questions, MathVista [34] does not in-



volve the application of financial knowledge, MMMU [63]
and MMMU-Pro [64] are all multiple-choice questions, still
showing a significant gap from the real-world scenario. The
lack of high-quality, knowledge-intensive multimodal fi-
nancial numerical reasoning datasets makes it challenging
to objectively evaluate the actual reasoning capabilities of
MLLMs and analyze their shortcomings.

Therefore, we propose FinMMR, a bilingual multi-
modal numerical reasoning benchmark designed to evaluate
the reasoning capabilities of MLLMs in the finance domain.
The dataset comprises 4.3K problems, covering 14 financial
subdomains (e.g. corporate finance and industry analysis),
with 8.7K images derived from 14 categories (e.g. tables
and ownership structure charts). Each problem includes rich
images, an unambiguous question, a Python-formatted so-
lution, and a precise answer.

For multimodality, without representing financial ta-
bles as structured text, FinMMR represent all tables, charts,
and diagrams as images. For comprehensiveness, Fin-
MMR covers 14 financial subdomains and two languages
(i.e. English and Chinese), demanding domain knowledge
such as option pricing and portfolio management. For chal-
lenge, FinMMR focus on multi-step numerical reasoning,
requiring models to provide exact numerical answers under
strict evaluation criteria (emphasizing units, percentages,
and decimal places). Furthermore, we mix each Chinese
questions with two distractor images that are contextu-
ally adjacent to the ground images, approaching real-world
multimodal reasoning scenarios.

We evaluate 12 current state-of-the-art MLLMs [17–19,
21, 42–44, 54], utilizing Chain-of-Thought (CoT) [58] and
Program-of-Thought (PoT) [9]. The experimental results
on FinMMR reveals three key findings:
• MLLMs Face Significant Challenges in Domain-

Specific Multimodal Numerical Reasoning: All evalu-
ated models underperform on FinMMR with CoT or PoT.
On the Hard set, the best-performing model, Claude 3.7
Sonnet with 64K extended thinking, achieves only 51.4%
accuracy, while OpenAI-o1 achieves merely 44.7%.
Through error analysis, we identify that visual perception,
knowledge reasoning, and numerical computation collec-
tively pose challenges to MLLMs. Current MLLMs still
struggle with complex multimodal reasoning tasks in spe-
cialized domains, compared to text-based reasoning.

• Better Synergy Between Visual Perception and Com-
plex Reasoning is Needed: Distracting images lead to
a greater than 10% drop in accuracy for Qwen2.5-VL-
72B compared to ground images alone, indicating that ir-
relevant visual information severely impacts multimodal
reasoning. By decoupling visual filtering and reason-
ing, Qwen2.5-VL-72B improved from 64.73% to 71.5%.
Combining MLLMs with LRMs, by efficiently parsing
visual information into structured text and leveraging the

LRM’s text-based reasoning capabilities, can also yield
better performance. The combination of GPT-4o and
DeepSeek-R1 achieves 86.72% accuracy on 1,160 tabular
questions, outperforming Claude 3.7 Sonnet (83.53%).

• Refined Structured Domain Knowledge Enhances
MLLMs’ Complex Reasoning: Leading MLLMs lack
sufficient experience in applying rich domain knowledge
when solving complex reasoning tasks. By annotating
structured financial functions and leveraging the model’s
ability to generate retrieval questions and make judg-
ments, knowledge augmentation can significantly im-
prove MLLMs’ performance. MLLMs achieve improve-
ments ranging from 2.76% to 4.31%, weaker models
can approach state-of-the-art (SoTA) performance, while
SoTA model can also achieve further gains.
These findings highlight the bottlenecks of MLLMs in

complex multimodal reasoning tasks in expert domains
closer to real-world scenarios. They emphasize the need for
continuous improvements in three key areas: more intricate
visual perception, more specialized knowledge reasoning,
and more accurate numerical computation. Alternatively,
leveraging tools or model combinations can help achieve a
balance between performance and cost, enabling MLLMs to
perform expert-level reasoning tasks like human experts.

2. Related Work

2.1. LRM and MLLM
By integrating train-time scaling and test-time scaling [26,
41], LRMs have demonstrated remarkable reasoning ca-
pabilities [60]. However, most LRMs are limited to han-
dling text-based problems. The growing demand for solv-
ing real-world tasks has spurred the development of multi-
modal large reasoning models [2, 18, 53] and benchmarks
designed to evaluate the perception and reasoning abilities
of MLLMs [6, 14, 22, 25, 28, 31, 33, 62–64]. For instance,
MME-CoT [25] evaluates models’ space-time understand-
ing, while EMMA [22] focuses STEM subjects. Following
this trend, domain-specific benchmarks which require deep
domain expertise have emerged, such as MathVista [34] for
mathematics and GMAI-MMBench [8] for medicine. Yet,
financial reasoning remains an unexplored area in the cur-
rent landscape of MLLM benchmarks.

2.2. Financial Benchmarks
The financial domain presents a distinct and more
formidable set of challenges for model evaluation, which
arise from its inherent complexity, information density, and
dependence on expertise. The majority of existing text-
only financial numerical reasoning benchmarks [11, 12,
27, 65, 66, 68] are constrained by limitations such as sub-
optimal annotation quality, narrow domain knowledge cov-
erage, and overly simplistic reasoning tasks. Although Fi-



Property Value

# Total Questions 4,300
# Difficulties (Hard/Medium/Easy) 1,300/1,500/1,500
# Validation / Test 3,400/900
# Chinese / English 2,150/2,150

# Operators (Hard/Medium/Easy) 5.34/2.97/1.75
# Lines of Code (Hard/Medium/Easy) 7.34/5.06/4.14
# Parentheses (Hard/Medium/Easy) 4.25/3.11/0.88
# Difficulty (Hard/Medium/Easy) 3.79/2.96/1.93

Table 1. Key statistics of FinMMR (Avg values of three subsets).

nanceReasoning [51] offers complex tasks with rich knowl-
edge and high-quality annotations, its text-only modality
limits cross-modal reasoning evaluation.

Recent multimodal financial benchmarks have sought to
bridge this gap but still possess limitations. FAMMA [61]
being sourced from textbooks and examinations does not
mirror the real-world tasks. FinMME [35] uses a multiple-
choice format, which may overestimate model reasoning
due to guesswork. MME-Finance[15] is constrained by
coarse annotations and an isolated assessment of domain
knowledge, limiting holistic evaluation of real-world finan-
cial reasoning.

3. The FinMMR Benchmark

3.1. Overview of FinMMR

We introduce FinMMR, a bilingual (English and Chinese)
multimodal benchmark for evaluating the reasoning capa-
bilities of MLLMs in financial numerical reasoning tasks.
FinMMR consists of 4,300 questions covering 14 financial
subdomains including corporate finance, industry analysis,
financial markets, and asset management. The key statis-
tics are summarized in Tab. 1, and the composition of sub-
domains and images is illustrated in Fig. 1. As illustrated in
Fig. 2, FinMMR introduces three key challenges:

• Rich Images Challenge Visual Perception: FinMMR
comprises 8.7K images from 14 categories, including
bar charts, line charts, ownership structure chart, etc.
MLLMs must identify relevant images among distractors
and extract critical information from the correct images.

• Comprehensive Domains Challenge Knowledge Rea-
soning: MLLMs need to flexibly apply diverse domain-
specific financial knowledge from 14 sub-domains to
solve multi-step reasoning tasks.

• Complex Formulas Challenge Numerical Computa-
tion: All questions require precise numerical answers,
eliminating the potential bias from lucky guesses that
could occur in multiple-choice formats.

3.2. Data Curation Process
We first curated a subset of questions from public text-
based financial reasoning benchmarks and systematically
transformed them into multimodal problems using a uni-
fied standard. Subsequently, we constructed a novel multi-
modal Chinese Research Report Question Answering (CR-
RQA) dataset from scratch, merging two data sources into
FinMMR. Each question is accompanied by an executable
Python solution, yields a numerical answer and delineates a
clear reasoning pathway.
Update to Public Datasets We re-annotate 124 and 163 fi-
nancial questions from MMMU [63] and MMMU-Pro [64],
respectively. Following rigorous verification, these ques-
tions were directly incorporated into our dataset. Further-
more, we extracted 77, 288, and 795 questions from Fi-
nanceMath [65], CodeTAT-QA [27], and CodeFinQA [27],
respectively. From DocMath-Eval [66], we further obtained
703 questions from its four subsets. For each question, we
rendered any tabular data as images while removing the cor-
responding table information from the text, ensuring that
MLLMs cannot rely solely on textual content.
Building a Novel Dataset from Scratch We collect 90 re-
search reports, all of which are obtained through authorized
access and cover diverse topics such as industry research,
macroeconomic analysis, and strategy research. We use
360LayoutAnalysis [39] to extract informative images and
discard those lacking explicit numerical data, reducing am-
biguity. For each retained image, we prompt Qwen-VL-
Max [47] to formulate questions requiring multiple reason-
ing steps or complex calculations. Each question is accom-
panied by an executable Python solution and a definitive
numerical answer.

Futhermore, we introduce distractor images—sourced
from the same reports adjacent to ground images—to chal-
lenge MLLMs to extract relevant numerical information
from structured, densely packed visuals.
Data Quality Assurance This process ensured that every
question was clearly written, featured a detailed reasoning
solution, and included an accurate final answer. The an-
notators comprised 16 master’s students in finance and two
experts holding CFA certifications. With the aid of LLMs,
this meticulous verification process spanned three months,
culminating in a dataset that meets high standards of clarity
and correctness.
Dataset Splitting and Release To classify the problems
by difficulty, we employ a heuristic algorithm that takes
into account the number of operators (o), code lines (l) and
parentheses pairs (p) in the Python solution. Specifically,
the difficulty rating rc of a problem is defined as:

rc = ln(max(o, 1)) + ln(max(l + p, 1)) (1)

FinMMR is classified as Easy (1,300), Medium (1,500)
and Hard (1,500) based on this formula, with each level ran-
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Dataset Size (Fin) Domain
Coverage

Modalities Question
Type

MMMU [63] 11,550 (1,603) 10 T+I MC
MMMU-Pro [64] 1,730 (286) 10 T+I, P.I. MC
FinanceMath [65] 1,200 (1,200) 10 T NUM
CodeTAT-QA [27] 3,144 (3,144) 6 T NUM
CodeFinQA [27] 5,463 (5,463) 13 T NUM
DocMath-Eval [66] 4,000 (4,000) 12 T NUM
FAMMA [61] 1,758 (1,758) 8 T+I MC, NUM
CRRQA (ours) 2,150 (2,150) 13 T+I, P.I. NUM
FinMMR (ours) 4,300 (4,300) 14 T+I, P.I. NUM

Figure 3. The comparison between finance-related datasets. These datasets vary in size, domain coverage, modalities, and question type,
with some focusing on text-only data while others include images. Each axis has scale labels with varying ranges to measure the number
of questions from each dataset across different subdomains. In the Modalities, T means text input, I means Images input, P.I. means pure
images input. In the Question Type, NUM means numerical answer, MC means multi-choice answer.

domly split into test and validation sets. All questions are
publicly available, while only the 300 validation answers
per level are released, while test answers remain private to
prevent data leakage [13, 48, 50]. We maintain an online
evaluation platform that enables researchers to assess their
models.

3.3. Comparisons with Existing Benchmarks

As illustrated in Fig. 3, previous work has studied multi-
discipline multimodal reasoning [63, 64], general mathmat-
ical reasoning [34] or text-based financial QA [27, 65, 66].
FinMMR focus on multimodal financial numerical reason-
ing, curating 4,300 questions requiring a deep understand-
ing of domain-specific images (e.g. earnings reports, stock
charts). To mimic this scenario, we deliberately incorporate
3,938 distractors into 2,150 questions to rigorously evaluate
MLLMs’ visual perception capability. Compared to exist-
ing financial benchmarks, they suffer from narrow domain
coverage[11, 67]. FinMMR encompasses 14 financial sub-
domains and 14 image categories, comprehensively evalu-
ating MLLMs’ domain-speific reasoning capabilities.

4. Evaluation System

To facilitate the evaluation of complex reasoning on Fin-
MMR, we established a dedicated evaluation system. All
MLLMs evaluated were accessed through official APIs.

4.1. Multimodal Large Language Models

We systematically evaluate the multimodal reasoning capa-
bilities of twelve recent MLLMs under the zero-shot set-
ting. The evaluated MLLMs are: OpenAI-o1 [42], GPT-
4o [40], Claude 3.7 Sonnet (including thinking mode) [2],
Gemini 2.0 Flash Thinking [18], Gemini 2.0 Pro [19], Gem-
ini 2.0 Flash [17], InternVL2.5-78B [45], Grok-2 [59],

Pixtral Large [1], Qwen2.5-VL-72B [3], Qwen-QVQ-72B-
Preview [53], and Qwen-Omni-Turbo [55].

4.2. Prompting Methods

Following Zhao et al. [65], our evaluation adopts Chain-
of-Thought (CoT) [58] and Program-of-Thought (PoT) [9]
two prompting methods. Due to budget constraints, we re-
port OpenAI-o1 performance with PoT prompts on Hard
set only. All other models are evaluated on the entire
benchmark with CoT prompts and PoT prompts. Detailed
prompts can be found in the Appendix.

4.3. Answer Extraction and Evaluation

Following Zhao et al. [65], we extract answers based on the
prompting technique. For CoT outputs, we employ GPT-
4o-mini to extract numerical answers. For PoT, we run
the generated program for numerical results. Finally, we
conduct a strict accuracy evaluation, comparing numerical
results with ground truth and deeming the results accurate
within a stringent error tolerance of 0.2%.

5. Experiments

We answer the following research questions (RQs): RQ1:
Are MLLMs multimodal reasoners with extended thinking
and PoT prompts? RQ2: What are the primary challenges
facing MLLMs? RQ3: How can the visual perception diffi-
culties of MLLMs be mitigated? RQ4: How can the knowl-
edge reasoning capabilities of MLLMs be enhanced? RQ5:
How can the numerical computation abilities of MLLMs be
compensated for?

5.1. Main Results (RQ1)

The performance of the MLLMs evaluated using two initi-
ation methods on the FinMMR is shown in Tab. 2.



Model Size Extended
thinking

Hard Medium Easy Avg. Token (M)

IO CoT PoT CoT PoT CoT PoT CoT PoT CoT PoT

Proprietary MLLMs
Claude 3.7 Sonnet ✔ (64K) 53.00 51.00 51.40 62.50 62.17 78.50 78.50 64.00 64.02 8.51 11.25
Claude 3.7 Sonnet ✘ 49.80 50.80 48.50 62.25 58.83 77.00 76.92 63.35 61.42 0.99 0.89
GPT-4o ✘ – 45.40 47.80 63.33 59.92 78.00 76.00 62.24 61.24 0.85 0.28
Gemini 2.0 Flash Thinking ✔ – 46.00 46.00 60.75 56.58 77.17 74.17 61.31 58.92 1.30 0.48
Gemini 2.0 Pro ✘ – 46.50 47.30 60.58 57.92 75.50 75.67 60.86 60.30 0.85 0.45
Gemini 2.0 Flash ✘ – 44.40 45.90 57.83 53.42 74.92 73.75 59.05 57.69 0.79 0.43
OpenAI-o1 ✔ 48.00 – 44.70 – – – – – – – 0.21
Qwen-Omni-Turbo ✘ – 17.50 27.30 35.83 48.00 57.50 61.67 36.94 45.66 0.90 0.42

Open Source MLLMs
Llama 4 Maverick 17B ✘ – 48.70 47.80 63.30 59.20 77.80 77.80 63.27 61.60 – –
Qwen-QVQ-72B-Preview 72B ✔ 43.30 40.30 6.20 55.67 9.67 75.42 12.42 57.13 9.43 5.43 5.70
Qwen2.5-VL-72B 72B ✘ – 43.30 46.20 63.42 64.17 77.42 75.83 61.38 62.07 1.05 0.44
Gemma 3 27B ✘ – 23.40 22.30 45.20 36.40 69.10 61.60 45.90 40.10 – –
InternVL2.5-78B 78B ✘ – 37.40 44.00 60.50 61.17 70.92 70.58 56.27 58.58 – –
Grok-2 ✘ – 27.80 25.50 41.50 35.83 73.08 72.83 47.46 44.72 1.13 0.60
Pixtral Large 124B ✘ – 19.70 25.50 41.50 35.83 73.08 72.83 47.46 44.72 1.15 0.75
Mistral 3.1 24B ✘ – 19.70 15.20 38.40 29.80 67.70 49.40 41.93 31.47 – –

Table 2. Results of different models using IO, CoT and PoT prompting methods on the test set of FinMMR. We use average Accuracy using
CoT prompting as the ranking indicator of model performance. The results underscore the superior performance of reasoning-enhanced
MLLM (i.e. Claude 3.7 Sonnet with 64K extended thinking) with PoT in complex multimodal numerical reasoning task.

Challenges of MLLMs in Domain-Specific Complex Nu-
merical Reasoning As the difficulty increases, the aver-
age accuracy shows a continuous and significant decline.
In the CoT setting, the average accuracy rates on the Easy,
Medium, and Hard sets are 73.79%, 53.33%, and 39.18%,
respectively. The currently best-performing model (i.e.
Claude 3.7 Sonnet with 64K extended thinking) consis-
tently demonstrates superior performance across all diffi-
culty sets using the CoT prompting method. However,
However, its accuracy on the Hard set remains below
the 60% passing threshold under both prompting meth-
ods. On the overall test set, Claude 3.7 Sonnet achieves
only 64% accuracy. These results highlight the challeng-
ing nature and rigorous standards of FinMMR, effectively
assessing the limits of MLLMs’ reasoning capabilities and
the disparities among models compared to previous multi-
modal reasoning datasets.
Does extended thinking help? Reasoning models show
consistent improvements, compared with non-reasoning
MLLMs. Claude 3.7 Sonnet with 64K extended thinking
achieves a 2.9% improvement compared to the model with-
out extended thinking (i.e. 51.40% vs. 50.80%) on the Hard
set, using PoT prompts. This enhancement comes at the cost
of using nearly 15 times more tokens for intricate thinking
(i.e. 448K vs. 30K). This trend also persists in the Gemini
2.0 Flash series.

We observe that Qwen-QVQ-72B-Preview lose basic
code generation capabilities due to the reinforcement learn-
ing of text-based long thinking, which is likely attributed
to biases in training strategies and training data. On the
Hard set, this model achieves a code execution success rate

of only 10.9%, resulting in an accuracy of merely 6.2% in
the PoT setting, significantly lower than the 40.3% accuracy
achieved with CoT. This finding highlights the importance
of maintaining foundational capabilities, such as program-
ming, while enhancing the reasoning abilities of LLMs, to
avoid rendering them ineffective in performing other basic
tasks.
Does PoT help? Experimental results strongly validate the
superiority of PoT prompting over CoT in numerical rea-
soning tasks, especially on the Hard set. After removing the
highest and lowest outliers, PoT achieves a mean accuracy
of 40.75% versus 40.16% for CoT, representing an improve-
ment of 0.59%. Furthermore, PoT encourages MLLMs to
leverage structured code generation to reduce token con-
sumption during reasoning. Under similar or lower token
usage, PoT achieves similar or greater accuracy. For in-
stance, GPT-4o achieves a 2.4% improvement in accuracy
over CoT while consuming significantly fewer tokens under
the PoT setting. Similarly, the Qwen2.5-VL-72B demon-
strates the most pronounced efficiency gains: PoT improves
accuracy to 64.17% from 63.42% while reducing token con-
sumption by 59% (153K vs. 373K) on the Medium set.
When addressing complex numerical reasoning prob-
lems, PoT avoids precise numerical calculations by uti-
lizing external tools (i.e. Python interpreter) and reduces
the need for repetitive text-based reasoning, which is
beneficial for most MLLMs.

However, we also observe that for certain reasoning-
enhanced models (e.g. Claude 3.7 Sonnet with 64K ex-
tended thinking and OpenAI-o1), due to the enforced re-
quirement for long thought, they still engage in extensive



Test Validation

Dataset Ground Images (%) Distractor Images (%) Degradation Ground Images (%) Distractor Images (%) Degradation

Hard 57.18 47.23 ↓ 9.95 56.74 45.58 ↓ 11.16
Medium 61.36 73.01 ↓ 11.65 64.73 77.08 ↓ 12.35
Easy 53.64 61.59 ↓ 7.95 51.52 60.61 ↓ 9.09

The improvement achieved by the filtering-reasoning pipeline on the medium validation set: 64.73 → 71.56 ↑ 7.58

Table 3. Degradation of Qwen2.5-VL-72B on all subsets due to distractor images and improvement achieved by the filtering-reasoning
pipeline on the medium validation set under PoT setting.

text-based reasoning before generating code even on the
PoT setting, resulting in exceptionally high token consump-
tion (448K and 212K), which is more than 10 times that of
other MLLMs. To further investigate this, we added an IO
baseline without any external prompts for reasoning mod-
els on the hard test set. The IO group achieved the highest
accuracy, which we attribute to the comprehensive built-in
system prompts embedded in the tested closed-source mod-
els. This highlights the need for future research to balance
reasoning performance with the control of inefficient and
redundant token generation, aiming to achieve a good trade-
off between performance and cost, as well as to investigate
whether PoT prompting can yield significant performance
gains on open-source reasoning models.

5.2. Error Analysis (RQ2)
To better analyze the capabilities and limitations of MLLMs
on FinMMR, we conduct a detailed error analysis for the
Claude 3.7 Sonnet with 64K extended thinking in the PoT
setting. Error analysis is based on 100 sampled failure
cases, which we categorize into three main error types,
some of which involve compound errors. More details of
error cases are provided in the Appendix.

• Visual Perception Error (30/100): The model incor-
rectly perceives, identifies, or interprets visual informa-
tion from images, or mistakenly recognizes incorrect
data, subsequently causing errors in calculations, broken
reasoning chains, or incorrect conclusions.

• Knowledge Reasoning Error (38/100): Due to insuffi-
cient domain-specific knowledge, the model exhibits log-
ical confusion or conceptual misunderstandings during
reasoning, leading to incorrect answers.

• Numerical Computation Error (32/100): In problems
involving mathematical operations and numerical reason-
ing, the model produces significant deviations from the
correct answers due to errors in the calculation steps, pre-
cision control, or numerical hallucination.

5.3. Visual Filtering for Reasoning (RQ3)
As shown in Tab. 3, when processing multi-image inputs
containing distractor images, Qwen2.5-VL-72B demon-
strates significantly lower accuracy across all difficulty lev-

els compared to ground images scenarios. This finding
aligns with conclusions from previous work [32, 49], in-
dicating that irrelevant visual information substantially in-
terferes with MLLMs’ reasoning capabilities. In particu-
lar, the Medium set exhibits the most pronounced perfor-
mance drop (77.78% ground images vs. 64.73% distractor
images), attributed to two key characteristics: (1) moder-
ate complexity making visual perception quality the per-
formance bottleneck; (2) semantic relevance between dis-
tractors and questions increasing visual filtering difficulty.
To address distractor image interference, we propose a two-
stage multimodal reasoning pipeline:
• Visual Filtering: We first instruct MLLM to analyze the

set of images I and the question q, assessing the relevance
of the image (relevant / irrelevant). Irrelevant images are
excluded from subsequent reasoning.

• Enhanced Reasoning: Then, the filtered subset I ′ and
the question q are input into the MLLM for the final rea-
soning. The system automatically reverts to the original
inputs I if all images are mistakenly filtered.

Does the Pipeline help? As illustrated in Tab. 3, we eval-
uate Qwen2.5-VL-72B on the 207 English questions with
distractor images of the Medium validation subset. Our
method achieves an overall accuracy of 71.56%, represent-
ing a 6.83 percentage point improvement over direct rea-
soning. This result is only 6.22% away from the ideal ac-
curacy of the ground images scenarios (77.78%). Detailed
analysis reveals 73.4% (152/207) ground image recognition
accuracy during filtering. When correctly identified, the ac-
curacy of these problems increases to 81.58% (124/152).
This finding underscores the necessity to enhance the
ability of MLLMs to filter out irrelevant image informa-
tion, thereby strengthening their robustness in reason-
ing within more complex real-world scenarios.

5.4. Knowledge Augmentation (RQ4)
To enhance the understanding and application capabilities
of financial knowledge of MLLMs, we explore a method of
enhancing refined knowledge to improve the performance
of MLLM in domain-specific complex reasoning tasks.

• Function Library Construction: We annotate a com-
prehensive financial function library containing 3,133



Setting PoT RAG with PoT

Gemini 2.0 Flash Thinking 78.71 83.02 (+4.31)
GPT-4o 80.60 83.62 (+3.02)
Claude 3.7 Sonnet (wo.) 81.21 85.43 (+4.22)
Claude 3.7 Sonnet (64K) 83.53 86.29 (+2.76)

Table 4. Improvements of different MLLMs with knowledge aug-
mentation on the 1,160 problems of FinMMR under PoT setting.

Python functions from financial encyclopedia. Each func-
tion includes precise functional descriptions, parameter
explanations, and step-by-step implementation code.

• MLLM-Instructed Knowledge Retrieval: In financial
problems with hybrid contexts, using short questions
or full contexts for retrieval often fails to retrieve di-
rectly relevant knowledge [5, 46]. We observed that
powerful MLLMs (e.g. GPT-4o) can effectively summa-
rize rich semantic information from contexts. Therefore,
we first prompt the MLLM to generate precise retrieval
queries based on the context [29, 56]. Then we use Con-
triever [23] to retrieve relevant financial Python func-
tions, based on the semantic similarity between the re-
fined queries and function descriptions.

• MLLM as Retrieval Judge: Recent studies have shown
that models are capable of judging the relevance of can-
didates retrieved for the question [20]. In this setting,
we first retrieved the Top-30 financial functions and then
prompted the MLLM to select the Top-3 functions most
useful to answer the question, if any.

Does Knowledge Augmentation help? As shown in
Tab. 4, all evaluated MLLMs enhanced with financial func-
tion knowledge achieved significant performance improve-
ments, ranging from 2.76% to 4.31%. Leveraging the im-
proved retrieval efficiency enabled by MLLM-Instructed
Knowledge Retrieval and MLLM as Retrieval Judge, the
knowledge augmentation approach achieves greater perfor-
mance, boosting the accuracy of Claude 3.7 Sonnet with
64K thinking to 86.29%. Notably, Gemini 2.0 Flash Think-
ing, which has relatively weaker reasoning capabilities, also
improved from 78.71% to 83.02%, approaching the perfor-
mance of Claude 3.7 Sonnet (83.53%) without knowledge
augmentation. The results further illustrate that refined
domain-specific reasoning knowledge can significantly
enhance the performance of MLLMs in complex reason-
ing tasks within expert domains.

5.5. Visual Parser with Reasoner (RQ5)
In complex multimodal numerical reasoning tasks, single
models often struggle to simultaneously achieve visual per-
ception, knowledge reasoning, and numerical computation.
To investigate the potential of model collaboration, we in-
struct the MLLM to act as the Visual Parser, responsible

Gemini 2.0 GPT-4o
Claude 3.7

GPT-4o + Gemini 2.0
GPT-4o + GPT-4o

GPT-4o + o1
GPT-4o + Claude 3.7

GPT-4o + R1

76

78

80

82

84

86

88

90

78.7

80.6
81.2

82.2
83.4

85.1 85.5
86.7

End-to-End Multimodal Models

Collaborative Parsing-Reasoning Pipeline

ACC/%

Figure 4. Results of model combinations and individual models.

for carefully converting images into structured textual data.
Then, an LRM acts as the Reasoner, performing multi-step
numerical reasoning based on the textual context.

Specifically, we filter 1,160 table question-answering
problems from FinMMR and employ GPT-4o as Visual
Parser, instructing it to separate table headers or cells with
vertical bars (|) and rows with newlines. For Reasoners, in
addition to GPT-4o, we evaluate several LRMs (i.e. Claude
3.7 Sonnet, Gemini 2.0 Flash Thinking, DeepSeek-R1,
and OpenAI-o1).
Does Model Collaboration help? As shown in Table
Fig. 4, the structured data from GPT-4o’s visual parsing
significantly enhances downstream reasoning. The indi-
vidual model (i.e. GPT-4o with PoT) achieves an accu-
racy of 80.6%, while the combination of models improves
the accuracy to 86.72% (i.e. DeepSeek-R1 as Reasoner
with PoT). Performance variance emerges across reason-
ing models using identical visual inputs. Claude 3.7 Sonnet
reaches 85.52%, outperforming Gemini 2.0 Flash Thinking
(82.24%), confirming the decisive impact of text-based rea-
soning capabilities. This evidences that model collabora-
tion effectively compensates for individual model limita-
tions through complementary strengths.

6. Conclusion
We introduce FinMMR, a multimodal, comprehensive, and
challenging benchmark for evaluating the financial numeri-
cal reasoning capabilities of MLLMs. FinMMR challenges
MLLMs’ intricate visual perception, specialized knowledge
reasoning, and accurate numerical computation through its
rich images, comprehensive domains, and complex formu-
las embedded in each multimodal financial question. The
evaluation results reveal that 12 state-of-the-art MLLMs
still struggle with complex multimodal reasoning tasks in
specialized domains. FinMMR highlights the bottlenecks of
MLLMs and the need for continuous improvements, includ-
ing reasoning-enhanced training, tool use, refined struc-
tured knowledge augmentation and model combinations,
allowing models to perform expert-level reasoning tasks
closer to the real-world scenarios like human experts.
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